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Narrowing of the spinal canal generates an amalgamation of stresses within the spinal cord

parenchyma. The tissue’s stress state cannot be quantified experimentally; it must be described using
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computational methods, such as finite element analysis. The objective of this research was to propose a

compressible, transversely isotropic constitutive model, an augmentation of the isotropic Mooney–

Rivlin hyperelastic strain energy function, to describe the guinea pig spinal cord white matter. Model

parameters were derived from a combination of inverse finite element analysis on transverse

compression experiments and least squared error analysis applied to quasi-static longitudinal tensile

tests. A comparison of the residual errors between the predicted response and the experimental

measurements indicated that the transversely isotropic constitutive law that incorporates an offset

stretch reduced the error by a factor of four when compared to other commonly used models.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The link between tissue-level mechanical insults to the spinal
cord and cellular damage has yet to be established although the
problem is clearly multi-axial and multi-scale (Fig. 1) (Panjabi and
White, 1988; Blight, 1988). Galle et al. (2007) were the first to
relate tissue level stresses to disruption of the axonal membrane
in an ex vivo model. Their model considered the plane strain
response of a two-dimensional cross-section loaded in transverse
compression and correlated physiological damage to strain
energy density and various stress components (Galle et al.,
2007). That study was followed by one that directly correlated
deficits in compound action potentials to tissue level stress fields
(Ouyang et al., 2008). This ex vivo model is advantageous because
it provides an opportunity to simultaneously measure the applied
load, deformation, and functional electrophysiology (Shi and
Blight, 1996; Shi, 2004; Shi and Whitebone, 2006). In order to
extend this model to multi-axial loading configurations, it is
necessary to develop a transversely isotropic constitutive law.

Consequently, the objective of this research was to propose a
transversely isotropic, compressible form of the Mooney–Rivlin
hyperelastic strain energy function to describe spinal cord tissue
mechanics. The parameters for the isotropic form of the
ll rights reserved.
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constitutive law were determined using the same inverse FEA
process developed by Galle et al. (2007) save that the incompres-
sible constitutive law was replaced with the compressible form.
Subsequently, the parameters governing the fiber reinforcement
were determined by performing quasi-static uniaxial tensile tests
on strips of excised guinea pig spinal cord white matter and
performing a least-squares analysis.
2. Methods

2.1. Specimen acquisition

The procedure used to isolate guinea pig spinal cord white matter has been

described previously (Shi and Whitebone, 2006) and was approved by the Purdue

University Animal Care and Use Committee. Briefly, adult guinea pigs

(bodyweight: �300 g) were anesthetized and perfused from the heart with cold,

oxygenated Krebs solution. The vertebral column was excised immediately

following perfusion, the spinal cord was carefully removed, and the pia mater

was cut away using micro-scissors. The spinal cord was then separated into two

symmetric halves by cutting along the sagittal plane. The gray matter was

dissected from the half cords to obtain strips of ventral white matter. Finally, the

white matter strips were cut to lengths of approximately 4 cm for testing and

stored briefly in oxygenated Krebs solution at room temperature to maintain

tissue hydration.

2.2. Compression tests

A custom testing system was used for both the transverse compression and

axial extension tests. Compression tests were performed on six samples of guinea

pig white matter following the procedures described by Galle et al. (2007). Briefly,
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Fig. 1. Multi-scale structure of the guinea pig spinal cord (A). The longitudinal direction exhibits a wavy structure that resembles the crimp patter observed in tendons and

ligaments. Individual axons (2–10 mm in diameter), stained black with horseradish peroxidase, can be observed in the transverse section (C). Mechanical loads are

ultimately transmitted to the individual cells (D) and may affect the function of membrane-bound proteins in the axons–shown in closeup in (E).
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Fig. 2. Digital photographs taken during quasi-static uniaxial elongation of a typical guinea pig white matter segment. There is no measureable contraction in the lateral

direction.
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strips of guinea pig spinal cord white matter (n¼6) were quasi-statically deformed

at a rate of 0.05 mm/s to 90% nominal transverse compression. Force feedback was

measured during compression at a rate of 16 Hz.
2.3. Axial stretch experiments

Tensile tests, both in vivo and in vitro, have been described previously within

the framework of linear elasticity for a variety of animal models (Hung and Chang,

1981; Hung et al., 1981; Bilston and Thibault, 1996; Ichihara et al., 2001; Ozawa

et al., 2001). For the present study quasi-static uniaxial tensile tests (n¼6) were

performed on strips of excised guinea pig spinal cord white matter. Cross-sectional

areas of the white matter strips were measured from digital photographs of the

tissue (2.0070.380 mm2). The white matter strip was allowed to hang under its

own weight, approximating the in vivo length. The white matter strips were

uniaxially elongated, without preconditioning, at a quasi-static rate of 0.05 mm/s.

Prior to elongation, the tissue was labeled with dots of India ink. The dots were

digitally imaged and tracked throughout tissue elongation to quantify l1, the

principal stretch in the longitudinal direction (Fig. 2) and the applied tensile force

was recorded with a Sensotec 1000g load cell (Honeywell, Morristown, NJ)

accurate to o0.005 N.
2.4. Prediction of the tensile response

In the longitudinal direction, the axons within the white matter extend

longitudinally throughout the tissue and the spinal cord parenchyma is devoid of a

collagenous, structural extracellular matrix (Shellswell et al., 1979). Consequently,

the guinea pig spinal cord white matter was modeled using an isotropic strain

energy function, Wiso, augmented with a reinforcing function, Wfiber, to represent

the axon–myelin bundles,

W ¼WisoþWz
fiber , ð1Þ

where the superscript, z is used to distinguish between forms of the strain energy

function. Material deformations were described by the deformation gradient, F,

and the invariants I1, I2, and I3 were expressed as functions of C¼FTF, the right

Cauchy—Green deformation tensor,

I1 ¼ trC,

I2 ¼
1
2 ðtr CÞ2�tr C2
h i

,

I3 ¼ det C ¼ J2 , ð2Þ

where J is the determinant of F.
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The isotropic, compressible form of the Mooney–Rivlin hyperelastic strain

energy function was chosen to model the isotropic matrix of the guinea pig spinal

cord white matter (Holzapfel, 2000),

WisoðI1 ,I2JÞ ¼ c0ðJ�1Þ2�2ðc1þ2c2Þln Jþc1ðI1�3Þþc2ðI2�3Þ, ð3Þ

where c0, c1 and c2, are material constants. The second Piola–Kirchhoff stress Siso

for the isotropic response was therefore

Siso ¼ 2
@Wiso

@C
¼ 2ðc1þc2I1ÞI�2c2Cþ2 c0JðJ�1Þ�ðc1þ2c2Þ½ �C�1: ð4Þ

The engineering stress, or first Piola–Kirchhoff stress, P¼FS, was used to relate the

applied force to the original, un-deformed cross-sectional area.

While most soft tissues are nearly incompressible in their natural environ-

ment, the water content is typically restricted by a surrounding membrane, the

incompressibility assumption does not hold when the surrounding membrane is

disrupted and water is allowed to escape from the tissue as is the case for most

ex vivo experiments. Without the reinforcement of the pia matter, the white

matter specimens demonstrated no measurable contraction in the lateral

directions when a stretch was applied in the 1-direction (Fig. 2).

For an axial stretch, the tissue deformation can be described in terms of the

principal stretches

F ¼

l1 0 0

0 l2 0

0 0 l3

2
64

3
75: ð5Þ

For the purposes of this study, the reinforcing functions were assumed to

depend on the pseudo-invariant I4 ¼ a0UCa0 only, where the unit vector a0

specified the fiber direction within the material. The fiber, or axon, direction is

given by the unit vector a0 ¼ 1 0 0
� �

. Four forms of the fiber reinforcing
Table 1
Strain energy functions and stress–stretch response for five reinforcing functions.

Reinforcing function Strain energy function

Isotropic model

Standard reinforcing function W1
fiberðI4Þ ¼

a
2
ðI4�1Þ2

Ligament exponential W2
fiberðI4Þ ¼ b expðI4�1Þ�I4½ �

Cardiac exponential W3
fiberðI4Þ ¼ d expðI4�1Þ2�1

h i

Modified exponential W4
fiberðI4Þ ¼ g expðI4�1Þ2�ðI4�1Þ2�1

h i

Offset stretch W5
fiberðI4Þ ¼

Z
2

I4�foffsetðl1Þ
� �2

,

foffsetðl1Þ ¼
l2

1 , l1 oloffset

l2
offset , l1 Zloffset

8<
:

Table 2
Parameter estimation and residuals for each model type.

Model type Parameter

Isotropic model c0 (kPa)

c1 (kPa)

c2 (kPa)

Standard reinforcing function a (kPa)

Ligament exponential b (kPa)

Cardiac exponential d (kPa)

Modified exponential g (kPa)

Offset stretch loffset (No units)

Z (kPa)
function (Weiss et al., 1996; Holzapfel, 2000; Weiss and Gardiner, 2001; Merodio

and Ogden, 2003, 2005) were chosen for comparison (Table 1).

2.5. Parameter estimation

We have previously presented the force-deformation response of the guinea

pig spinal cord white matter to quasi-static transverse compression (Galle et al.,

2007). In our earlier work, we compared the force–deflection curves from the

transverse compression experiments to a plane strain computational model of the

white matter. Inverse FEA was then used to determine the material parameters

corresponding to an incompressible Mooney–Rivlin constitutive law. For this

study, we allowed for compressibility of the parenchyma and repeated the process

described previously (Galle et al., 2007). The strain energy function was

implemented as a plane strain, parametric FEM (Software: COMSOL 3.2 with

MATLAB, Comsol, Burlington, MA). The material parameters c0, c1, and c2 were

found by minimizing the error between the predicted force–deflection curve and

the measured relationship (Galle et al., 2007).

A similar process was used to obtain the coefficients for each of the reinforcing

functions from the longitudinal force–deflection response. For longitudinal

extension, the procedure was considerably simpler because the deformation was

assumed to be homogeneous. Consequently, the analytical relationships between

P11 and the measured stretch (Table 1) were curve fit to the experimental data

using a least squared error minimization procedure.
3. Results

The material parameters, c0, c1, and c2, were determined for
each sample and the average values were used for the subsequent
Stress–stretch response

Piso
11 ¼

Fðl1Þ

A0
¼ 2c0ðl1�1Þþ2ðc1þ2c2Þ l1�

1

l1

� �

P1
11 ¼ 2c0ðl1�1Þþ2ðc1þ2c2Þ l1�

1

l1

� �
þ2aðl3

1�l1Þ

P2
11 ¼ 2c0ðl1�1Þþ2ðc1þ2c2Þ l1�

1

l1

� �
þ2bl1 exp l2

1�1
� �

�1
h i

P3
11 ¼ 2c0ðl1�1Þþ2ðc1þ2c2Þ l1�

1

l1

� �
þ4dðl3

1�l1Þ expðl2
1�1Þ2

h i

P4
11 ¼ 2c0ðl1�1Þþ2ðc1þ2c2Þ l1�

1

l1

� �
þ4gðl3

1�l1Þ exp l2
1�1

� �2
� 	

P5
11 ¼

2c0ðl1�1Þþ2ðc1þ2c2Þ l1�
1

l1

� �
, l1 oloffset

2c0ðl1�1Þþ2ðc1þ2c2Þ l1�
1

l1

� �
þZl1ðl

2
1�l

2
offsetÞ, l1 Zloffset

8>>><
>>>:

Mean7Std dev. Average residual (kPa)

0.41270.339 0.651

0.87670.625

0.61470.234

71.7770.9 0.297

67.3770.5 0.276

34.7736.1 0.270

5,314710,647 0.080

1.08370.063 0.041
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Fig. 3. Experimental force–deflection relationship for six ventral white matter specimens (A) and an example stress–stretch response for a single specimen (B). The results

of the curve fits for the isotropic Mooney–Rivlin model and the five different reinforcing functions examined herein are superposed (B). The best fit was obtained from the

offset stretch model.
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analysis of the axial loading experiments (Table 2). The worst fit
to the experimental data was obtained from the isotropic model
while the best fit was obtained using the offset model (Fig. 3).
4. Discussion

Slow compression spinal cord injuries occur when the spinal
canal cross-section is narrowed, the consequence of oncologic,
infective, or degenerative lesion growth. The narrowed canal
gradually compresses the spinal cord parenchyma until neurolo-
gical deficit results. Cellular injury is localized within the white
matter, as blood flow to and oxygen levels within the gray
matter are typically maintained during slow compression. Hall-
marks of white matter cellular injury include vacuolization, loss of
myelin, and axonal swelling (Kraus, 1996). Further study of the
process by which multi-axial mechanical insults create physiolo-
gical defects requires the development of a transversely isotropic
constitutive model.

Herein, we chose to adapt the Mooney–Rivlin hyperelastic
constitutive model to describe guinea pig spinal cord white
matter mechanics and to utilize an inverse FEA approach to
determine the material parameters. Of all the models considered
here, the offset stretch model provided the smallest residual error
and the least sensitive set of parameters. In particular it should be
noted that this model formulation has a physiological basis in the
crimp-like structure exhibited at the axonal level. This is the first
attempt to model the transverse isotropy of the spinal cord white
matter and will provide a basis for evaluating the mechanics of
decompression surgery as well as a foundation for studying the
viscoelastic and high strain rate response of human spinal cords. It
should be noted, however, that spinal cord injuries are often
caused by complex, multi-axial deformations for which more
comprehensive constitutive laws may be appropriate (Holzapfel
et al., 2000). In addition, it is likely that some of the variation
observed in the force-stretch data (Fig. 3) is due to the statistical
distributions in axon–myelin bundle stiffness (Billiar and Sacks,
2000) and initial crimp angle. Additional studies coupling
computational models with multi-axial loading experiments are
required to fully elucidate the structure–function properties of
the spinal cord.
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