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Abstract

This study explores in detail the functional consequences of subtle retraction and detachment of myelin around the nodes
of Ranvier following mild-to-moderate crush or stretch mediated injury. An equivalent electrical circuit model for a series of
equally spaced nodes of Ranvier was created incorporating extracellular and axonal resistances, paranodal resistances, nodal
capacitances, time varying sodium and potassium currents, and realistic resting and threshold membrane potentials in a
myelinated axon segment of 21 successive nodes. Differential equations describing membrane potentials at each nodal
region were solved numerically. Subtle injury was simulated by increasing the width of exposed nodal membrane in nodes
8 through 20 of the model. Such injury diminishes action potential amplitude and slows conduction velocity from 19.1 m/
sec in the normal region to 7.8 m/sec in the crushed region. Detachment of paranodal myelin, exposing juxtaparanodal
potassium channels, decreases conduction velocity further to 6.6 m/sec, an effect that is partially reversible with potassium
ion channel blockade. Conduction velocity decreases as node width increases or as paranodal resistance falls. The calculated
changes in conduction velocity with subtle paranodal injury agree with experimental observations. Nodes of Ranvier are
highly effective but somewhat fragile devices for increasing nerve conduction velocity and decreasing reaction time in
vertebrate animals. Their fundamental design limitation is that even small mechanical retractions of myelin from very
narrow nodes or slight loosening of paranodal myelin, which are difficult to notice at the light microscopic level of
observation, can cause large changes in myelinated nerve conduction velocity.
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Introduction

The majority of the axons in vertebrate nervous systems are

wrapped with insulating layers of back-to-back cell membranes

called myelin. The mechanisms by which myelin speeds axonal

conduction in health and by which damage to myelin leads to loss

of axonal conduction in disease have attracted much attention [1].

Still, the causes of myelin related functional deficits remain

incompletely understood [2–4]. Continuing multidisciplinary

investigation combining morphology, electrophysiology, and

mathematical modeling may elucidate critical mechanisms and

perhaps guide the development of effective treatments for medical

conditions involving myelin damage, including traumatic injury to

the brain or spinal cord and demyelinating diseases such as

multiple sclerosis.

Myelin forming Schwann cells in the peripheral nervous system

or oligodendrocytes in the central nervous system wrap around the

axon multiple times to create laminated layers of insulating cell

membrane, as shown schematically in Figure 1. Periodic short

gaps in the myelin sheath along the axons having width, s,

approximately 0.3 to 1 micrometer, are the Nodes of Ranvier,

where the density of transmembrane channels carrying inward

sodium current is high and where transmembrane action

potentials are initiated. Immediately adjacent to the nodes

themselves on either side in the axial dimension are the paranodal

regions, where myelin is tightly attached to the underlying axonal

membrane. Beyond the paranodal regions are the functionally

important juxtaparanodal zones, where the density of transmem-

brane channels carrying outward potassium current is high. Ring-

like bands of paranodal cell-cell attachments separate and insulate

the bare nodes from the juxtaparanodal regions. Since myelin

inhibits the conduction of ionic current, the action potential tends

to jump from one node to the next along the longitudinal axis of

an axon. This process of jumping, or ‘‘saltatory conduction’’,

boosts the speed of propagation of action potentials along

myelinated axons to tens of meters per second, rather than tens

of centimeters per second typical of unmyelinated axons [5].

Here we explore in detail the functional consequences of subtle

injury to the well-known anatomic arrangement of the nodes of

Ranvier, coupled with the more recently discovered segregation of

nodal sodium channels from juxtaparanodal potassium channels

[6–8]. Compared to the internodal regions, a node of Ranvier has

a relatively high density of sodium channels, which enable the

generation of action potential at the node. The virtual absence of

sodium channels in the paranodal and juxtaparanodal regions,

together with high electrical resistance of the paranodal region,

blocks axial ionic current beneath the myelin sheath and favors

saltatory conduction. Potassium channels, on the other hand, are

segregated from sodium channels in nodes of Ranvier, residing

predominantly beneath the myelin at the juxtaparanodal area, and

separated from the node by the paranodal region [9]. There is now
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general agreement that mechanical crush or stretch injury results

in myelin damage, especially in the paranodal region [10,11]. This

idea is consistent with biomechanical modeling showing significant

stress in this area under mechanical insults [12], causing retraction

of myelin away from the node [13,14]. With more severe injury

there is also de-coupling and detachment of paranodal myelin,

opening a low resistance gap or sleeve-like channel between the

node and the juxtaparanodal region, through which increased

potassium ion current may flow [10].

Subtle retraction and detachment of paranodal myelin can have

two electrical effects. The first is increasing bare nodal area, which

increases the electrical capacitance of the node. The second is

loosening of paranodal cell-cell junctions, which reduces the

normally high electrical resistance between the juxtaparanodal

potassium channels and the nodal capacitance. In the present

paper we consider the biophysics of nodal function before and

after traumatic myelin retraction and partial detachment to

explain and predict the effects of such subtle mechanical injury,

which is sufficiently mild that it is clearly visible only at the

electron microscopic level of observation [10]. Our approach is to

employ a mathematical model of ionic current flow that reflects

changes caused by such subtle injury to the nodal and paranodal

regions.

The use of mathematical models to study mechanisms of

saltatory conduction is well precedented [15–24]. Classical and

more modern approaches almost universally involve a form of

cable equation or cable model, as originally described by FitzHugh

[15]. This approach regards successive nodes as a chain of leaky

capacitors having voltage sensitive ion channels, and connected in

parallel by extracellular and intracellular resistances between the

nodes. Currents and voltages at each node are computed from a

second order partial differential equation that describes the

voltages at each node as functions of time and space. Such

equations are known as cable equations, because of their similarity

to cable or transmission line equations [25], and the corresponding

models of nerve conduction are known as cable models.

Subsequent, more detailed mathematical treatment of composite,

myelinated axon models [23,24] leads to expressions essentially

similar to the original solutions of FitzHugh. (Compare, for

example, Basser Eq. (35) and Nygren and Halter Eq. (18) with

FitzHugh Eq. (1)).

The goal of the present paper is to determine quantitatively how

myelinated nerve conduction velocity depends upon the local

integrity of the nodes and paranodal regions at the electron

microscopic level of observation and how nerve conduction might

be slowed or blocked by the known pathological changes to these

structures [2]. We also explore how drug treatments that block

potassium conductance in the juxtaparanodal region may act to

restore conduction in subtly damaged regions. Toward this end it

is insightful to derive from first principles a FitzHugh style cable

model of myelinated axon conduction for the specific purpose of

characterizing the parameters related to subtle injury.

Methods

Model of a Myelinated Axon
A simplified equivalent electrical circuit for a series of equally

spaced nodes of Ranvier, together with associated paranodal and

juxtaparanodal regions, is shown in Figure 2. The intracellular

resistance between nodes along the axons is denoted Ra and is

much larger than electrical resistance of the extracellular current

path between nodes, Re, (not show in Figure 2). The nodal

Figure 1. Relevant anatomy. (a) Schematic longitudinal section of a myelinated axon. The width of each node of Ranvier is denoted s. The
distance between nodes is denoted L. Arrows indicate flow of positive ionic current during depolarization of Node 1 as conduction of the action
potential moves toward Node 2. This sketch is foreshortened in the axial dimension. Anatomically L/s , 1000. (b) Schematic cross section of a
myelinated nerve or fiber tract. Each axon (solid black) is surrounded by a sheath of myelin (white) and in turn surrounded by a sheath of non-
myelinated tissue (shaded) known as endoneurium or neuropil. The mean radius of the sheath of endoneurium is denoted re and the thickness of the
sheath is denoted h. The cross section of endoneurium, 2preh, is much greater than that of the axon.
doi:10.1371/journal.pone.0067767.g001
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capacitances of the exposed, non-myelinated axon segments at

each node are represented as C~2prasCm, where Cm is the axon

membrane capacitance per unit area, s is the span of bare,

unmyelinated axon in a node of Ranvier, and ra is the radius of the

axon. Definitions of symbols and variables are provided for

reference in Table 1.

Because of the relatively large distance between nodes

compared to the node width, the segregation of ion channels for

inward sodium current and outward potassium current in the

nodal and juxtaparanodal regions does not change or invalidate

the simplified equivalent circuit shown in Figure 2 as a realistic,

model of a myelinated axon segment. However, the potassium

current sources in the juxtaparanodal regions are a few

micrometers distant from the sodium current sources in the bare

nodal regions. Potassium current must flow between the axolem-

ma and tightly adherent myelin in the paranodal regions in order

to repolarize the nodal capacitance. This ultrastructural detail may

add a substantial series resistance to the potassium ion ‘‘battery’’,

which is omitted for simplicity in Figure 2 but described in detail in

Appendix S1.

To specify extracellular and axonal resistances, Re and Ra, we

note that the resistance of a volume conductor in terms of its

length, cross-section, and resistivity is

R~r
L

A
, ð1aÞ

where r is resistivity, L is length, and A is cross sectional area [26].

Resistivity is the intrinsic property of a material that opposes the

flow of steady electric current and is expressed in units of ohm-cm.

From the geometry of Figure 1 we can write algebraic expressions

for the internal resistance of an axon, Ra, between nodes as a

function of the axon radius, ra, and also for the external resistance,

Re, of the sleeve of tissue surrounding the myelin, through which

current must flow between two adjacent nodes to complete the

electrical circuit. For Ra and Re we have

Ra~
raL

pr2a
and Re~

reL

2preh
, ð1bÞ

where a sleeve of aqueous extracellular fluid of thickness h and

mean radius re surrounds the myelin sheath over distance L and

has extracellular fluid resistivity, re. Noting that extracellular

resistance is about two orders of magnitude less than axonal

resistance leads to a compact model shown in Figure 2.

Time-varying Sodium and Potassium Currents
Local inward sodium currents, iNa0, iNa1, iNa2, … and outward

potassium currents iK0, iK1, iK2, … for nodes 0, 1, 2, … and

nearby juxtaparanodal regions are governed by time varying

transmembrane conductances, GNa0, GNa1, GNa2 … for sodium

and GK0, GK1, GK2 …. for potassium and the respective sodium

and potassium equilibrium potentials [5]. Convenient descriptive

formulas for ion specific conductances as functions of time, t’j ,
after onset of activation of node, j, (including both the bare nodal

membrane and functional juxtaparanodal regions) have the form:

G(t’j)~at’2j e
{bt’j ð2Þ

for constants, a and b.

Such functions nicely describe the classical waveforms of time-

varying conductance determined experimentally in units of

Seimens per square centimeter. It is easy to show using calculus

that the values of a and b required to produce a peak conductance

G* at time t* after onset of activation are given by the expressions

a~G � (e=t � )2 and b~2=t�, were e is the base of the natural

logarithms <2.781. In turn, values of a and b describing textbook

normal activation functions for sodium and potassium conduc-

tance [5] can be computed as shown in Table 2. Specifically, we

assume for the purpose of this study that the densities of sodium

and potassium of ion channels per square centimeter of membrane

in the regions of the nodes of Ranvier where such channels are

concentrated is similar to that classically described for non-

myelinated axons [6].

Using these descriptive functions for time-dependent sodium

and potassium conductance per square centimeter of membrane

area, the corresponding local nodal currents at node, j, and

adjacent paranodal and juxtaparanodal membranes of the model

become

iNaj~2prasGNaj(ENa{Vj) ð3aÞ

and

iKj~
Vj{EK

1
2pralGKj

zRp

ð3bÞ

in terms of the axon radius, ra, unstretched node width, s, length of

juxtaparanodal region on both sides of the node, l, local prevailing
transmembrane potential, Vj, and the sodium and potassium

Figure 2. Electrical model for multiple nodes of Ranvier. Arrows indicate directions of positive ionic current. Shading indicates foreshortened
myelinated regions. In life the actual distance between nodes (,1000 mm) is much greater than the width of a single node (,1 mm). Current is
denoted by i, capacitance by C, resistance by R, and voltage by V. Lumped ionic currents from sodium and potassium channels in and around each
node are shown as a single current source.
doi:10.1371/journal.pone.0067767.g002
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equilibrium potentials ENa and EK, as described in [5]. In

calculating potassium current, the juxtaparanodal length, l,
including both sides of the node, is taken as approximately 10

times the normal nodal length based on cytochemical studies of

potassium ion distribution [4,14]. Expression (3b) represents the

current passing through the juxtaparanodal membrane conduc-

tance in series with paranodal resistance, Rp. Rp is the resistance

of the thin sleeve of extracellular matrix material through which

potassium current must flow from the juxtaparanodal regions to

the bare axonal membrane of the local node of Ranvier. Note for

the case Rp= 0 the expression for potassium current is analogous

to that for sodium current. If Rp were exceedingly large, then

potassium current would be zero. Details of the treatment of

potassium current in the presence of paranodal resistance and the

estimation of a numerical value for paranodal resistance are

provided in Appendix S1.

The same conductance functions GNa(t9j) and GK(t9j) are used

for all nodes. However, the time variable, t9j, for each node differs

among nodes, depending on the time of activation. Here we let tj
represent the clock time of activation of nodes j = 0, 1, 2, … n in

the model. In particular, time tj is defined as the clock time, t,

when the transmembrane potential Vj(t) equals or exceeds the

threshold potential Vth for each node j = 0, 1, 2, …. In turn,

t9j =max (0, t2tj). Then the node-specific ionic conductance is

computed for times t.tj as Gj(t’j)~a(t’j)
2e{bt’j . For Node 0, the

first node in the chain, t0 = 0, so that activation begins at node 0,

proceeding from left to right in Figure 2.

Solving for Membrane Potentials at Successive Nodes
The model of the myelinated axon includes an arbitrary

number ,20 nodal capacitances, connected by equal axonal

resistances, Ra~(raL=(pr
2
a)), through which ionic current may

flow, as shown in Figure 2. The capacitances, C~2prasCm,

correspond to the bare membrane areas of successive nodes of

Ranvier. Transmembrane potential is specified as the intracellular

minus extracellular electrical potential at each node. To simulate

myelinated nerve conduction node 0 at the left boundary is

actively depolarized by a suprathreshold stimulus. The successive

nodes 1, 2, … n become active if their membrane potential

exceeds a threshold value, Vth, such as –50 mV.

The computational approach used here is an adaptation of that

previously published for modeling the circulatory system by one of

Table 1. Nomenclature.

Symbol Definition Units

A Area cm2

C Capacitance of bare membrane in a node of Ranvier farads

Cm Specific membrane capacitance per unit area farads/cm2

d Axon diameter cm

e Base of natural logarithms (2.718…)

G Membrane conductance per unit area ohm21 cm22

h Thickness of a conducting sheath surrounding a myelinated axon cm

i, i0, i1 Positive ionic current during an action potential amperes

l Length of juxtaparanodal region cm

L Distance between nodes of Ranvier cm

n Number of nodes in a discrete model

p Circle ratio (3.1415 …)

Ra Axonal electrical resistance between nodes of Ranvier ohms

Re Extracellular electrical resistance between nodes of Ranvier ohms

Rp Paranodal electrical resistance between a node and both juxtaparanodal regions of a myelinated axon ohms

ra Radius of an axon cm

re Radius of a conducting sheath surrounding a myelinated axon cm

r, re, ra Resistivity of extracellular or axonal fluid ohm-cm

s Span of bare axon in a node of Ranvier in the axial dimension cm

t Clock time sec

t Clock time of activation of a node sec

t9 Time after node activation (t 2 t) sec

V Transmembrane potential difference volts

Vth Threshold potential for initiation of an action potential volts

v Nerve conduction velocity m/sec

doi:10.1371/journal.pone.0067767.t001

Table 2. Constants for descriptive functions for membrane
conductance per unit area, G(t’j)~at’2j e

{bt’j .

Coordinates of peak
conductance [5] Model function constants

t* (sec) G* (ohm–1cm22) a (ohm–1cm–2sec–2) b (sec–1)

Na+ 0.0001 0.028 2.16107 26104

K+ 0.0005 0.013 3.86105 46103

doi:10.1371/journal.pone.0067767.t002
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us [27], based upon the definition of capacitance and Ohm’s Law.

The definition of capacitance is C~dQ=dV , where C is nodal

capacitance and dV is the incremental change in electrical

potential or voltage across the capacitance as charge dQ is

introduced. For current i = dQ/dt flowing during time increment,

dt, we must have dV/dt = i/C. Ohm’s Law, which relates current

to voltage and resistance, is i~(DV )=R, where DV is the

instantaneous difference in voltage across resistance R as current

i occurs.

Applying these basic concepts with reference to Figure 2

provides a set of governing differential equations that can be used

to describe transmembrane potentials in the chain of nodes.

Beginning with the most distant node, n, we set as a boundary

condition

dVn

dt
~ 0: ð4Þ

For active nodes the net current flowing onto a nodal

capacitance is the difference between inflow to and outflow from

the node. Thus, the general structure of equations (5) and (6) below

is: rate of voltage change= transmembrane sodium current inflow,

minus transmembrane potassium current outflow, plus axon

current inflow, minus axon current outflow, all divided by local

capacitance. Ohm’s Law allows calculation of axon current inflow

and outflow from voltages at adjacent nodes. For interior nodes

j = 1, 2, … n –1

dVj

dt
~

ij

Cj

~ iNaj{iKjz
Vj{1{Vj

Ra

{
Vj{Vjz1

Ra

� �
1

Cj

: ð5Þ

For left hand node 0

dV0

dt
~

i0

C0
~ iNa0{iK0{

V1{V2

Ra

� �
1

C0
: ð6Þ

Estimation of other Parameters
We consider a textbook normal case as a primary model.

Membrane ionic conductances per square centimeter are as listed

in Table 2. From anatomic sections such as those in [28] the radius

of the sleeve of fibrous tissue is about 6 micrometers and the

thickness of the sleeve is about 2 micrometers. Axon diameter

averages 1.0 micrometer [29–31]. The width, s, of a normal node

of Ranvier ranges from about 0.3 micrometer to about 1.0

micrometer, or 0.3 to 1.0 times the diameter of an axon, in various

anatomic specimens [28]. A middle value for the width, s, of a

node is about 0.65 micrometer [10,32]. The span of the

juxtaparanodal region, l, on both sides of a normal node is taken

as 10 times the axon radius [33]. The resistivity of intracellular

fluid is about 200 ohm-cm [31]. The paranodal resistance, Rp, is

estimated as 3.261010 ohms, as explained in Appendix S1. The

specific membrane capacitance of nerve cell membranes is about 1

mircofarad per square centimeter [5]. Using these values to

evaluate parameters, together with normal membrane potentials

[5] (resting membrane potential –85 mV, threshold potential –

50 mV, sodium equilibrium potential +67 mV, potassium equi-

librium potential –95 mV), one can specify the values of all

parameters for a standard normal model.

Numerical Integration
To describe waveforms of membrane potential vs. time at each

node j = 0, 1, 2, … n –1 equations (5) and (6) for dV/dt were

integrated numerically using the simple Euler method, imple-

mented in Visual Basic code within an Excel spreadsheet on an

ordinary personal computer. For each node the membrane

potential Vj at successive time steps Dt was calculated as

Vj(tzDt)~Vj(t)z
dVj

dt
Dt, ð7Þ

using expressions (4), (5), and (6) for dVj/dt. Initial conditions at

t = 0 describe the state of the axon segment at rest, with Vj set to

the resting transmembrane potential for j = 1, 2, … n. Only node 0

is active at time zero (t0 = 0). Nodes j = 1, 2, … n –1 become active

when t.tj. As a boundary condition, the rightmost node, n, in the

chain is clamped at the resting potential and is never activated.

A model of 21 nodes (including bare nodal axon and functional

juxtaparanodal membrane) separated by a nominal average

internodal distance, L, of 1 mm represented a hypothetical axon

segment 2 cm in length. The combined bare nodal, paranodal,

and juxtaparanodal regions of each node had a total axial length

on the order of 0.01 mm or about 1 percent of the axial distance

between nodes. Given initial conditions at t = 0, the evolution of

potentials Vj(t) was computed as a ‘‘marching solution’’, for which

stability and accuracy are ensured by using a sufficiently small

value of Dt, such as 0.1 microsecond. Increasing or decreasing Dt
without effect on the results confirmed that a sufficiently small

value was chosen for Dt. Wave propagation typically stabilized

over three successive nodes.

Simulation of Injury and Drug Treatment
In models of localized crush injury of the spinal cord an impulse

was initiated at node 0. Nodes 1 through 7 had normal

parameters, representing undamaged tissue. A mild form of

stretch or crush injury causing retraction of myelin around

stretched nodes was simulated by increasing the width of exposed

nodal membrane, s, in nodes 8 through 20. Normal nerve

conduction velocity was taken as the inter-nodal distance, divided

by the steady-state wave propagation time between nodes 4 and 5,

namely (t5–t4)/L. Injured nerve conduction velocity was taken as

the inter-nodal distance, divided by the steady-state wave

propagation time between nodes 15 and 16, namely (t16–t15)/L.
In some simulations a more severe form of stretch or crush injury

was simulated that included both retraction and detachment of

paranodal myelin. Paranodal myelin detachment, that is, radial

separation of paranodal myelin from the underlying axon

membrane, was simulated by decreasing paranodal resistance to

one tenth or one hundredth of its normal value. In other

simulations the effect of the potassium channel blocking drug, 4-

aminopyridine, was simulated by decreasing peak potassium

conductance to 20 percent of its normal value, representing

mild-to-moderate inhibition that would be reasonable to achieve

experimentally.

Results

Normal Nerve Conduction
Figure 3 shows successive action potentials in a normal

myelinated axon model. Transmembrane potentials for nodes

numbered 0 through 16 in the series are shown in successive

curves from left to right. A propagated wave of excitation travels

down the chain of nodes from left to right. Nerve conduction

velocity is 19.1 m/sec.

Conduction in Injured Myelinated Axons
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Figure 4 shows transmembrane sodium and potassium currents

in this normal model as a function of time for node number 6 in

the chain of normal nodes. The peak of potassium conductance is

blunted somewhat, compared to that in an unmyelinated axon,

because of the effect of paranodal resistance, Rp, the anatomic

substrate for which is the thin sleeve of extracellular matrix

material and tight junctions in the paranodal region between the

axolemma and overlying myelin. Recharge current for the node

must pass through this normally thin space to reach the nodal

capacitance.

Conduction velocity in otherwise normal myelinated axons

depends on node width, s, measured along the axial dimension, as

shown in Figure 5.

Simulated Crush Injury
Figure 6 illustrates axonal conduction in a model of simulated

crush injury. The widths, s, of nodes 8 through 20 on the right

have been stretched from 0.65 mm to 1.95 mm, simulating the

degree of nodal stretching observed in experimental crush injury

[10]. However, the length of axon over which sodium channels are

concentrated, s*, is not changed in keeping with the pre-injury

segregation of sodium channels in the nodal region. Here s* is

substituted for s in Equation (3a). In the crushed segment (right)

the time between action potentials at successive nodes increases,

indicating slowed impulse conduction.

In this example crush injury diminishes action potential

amplitude by about one third and also diminishes the slope of

the rising phase of the action potential, slowing conduction

velocity from 18.8 m/sec in the normal region on the left to

7.8 m/sec in the crushed region on the right. The longer discharge

time required for stretched nodes allows for greater outward

potassium current to develop (Figure 4), and in turn less net

inward positive current inflow during the rising phase of the action

potential.

The reduced action potential amplitude after stretch injury

appears to happen for the following reason. The currently

Figure 3. Modeled action potentials at successive nodes of Ranvier in a normal myelinated axon. The dotted horizontal line represents
threshold potential. Average axon diameter 1.0 micrometer; number of nodes of Ranvier 21; node width 0.65 micrometer; width of juxtaparanodal
region on both sides of a node 5.0 micrometers. The resistivity of intracellular fluid 200 ohm-cm; normal paranodal resistance 3.261010 ohms; specific
membrane capacitance of axonal membrane 1 mircofarad per square centimeter; resting axonal membrane potential –85 mV; threshold potential –
50 mV; sodium equilibrium potential +67 mV; potassium equilibrium potential –95 mV. The time step for numerical integration was 0.1 microsecond.
doi:10.1371/journal.pone.0067767.g003

Figure 4. Normal ionic currents for node 6 in the myelinated
axon model of Figure 3.
doi:10.1371/journal.pone.0067767.g004

Figure 5. Normal myelinated nerve conduction velocity as a
function of the node width.
doi:10.1371/journal.pone.0067767.g005

Conduction in Injured Myelinated Axons
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depolarizing node of Ranvier acts as a constant current source in

the presence of stretch injury. When mild stretch injury increases

node width, the length of axon over which sodium channels are

concentrated is not changed, in keeping with pre-injury segrega-

tion of sodium channels in the nodal region. However, simple

stretch injury increases the nodal surface area, and in turn

increases the nodal capacitance. When the increased nodal

capacitance of the next downstream node is discharged by a

constant current source the rate of change in voltage is reduced

(dV/dt = i/C, where current, i, is constant and capacitance, C, is

increased). The reduced slope between the threshold potential and

the peak of the action potential reflects the increased capacitance.

The peak does not reach normal height, because a reduced slope

over a constant duration results in a reduced peak amplitude.

The predicted results are similar to the diminished amplitude

and increased latency of compound action potentials observed

experimentally by Shi and Blighty [34]. Because node width, s, is

on the order of only one micrometer normally, subtle damage,

separation, or retraction of the myelin sheath at the nodes of

Ranvier might go unnoticed at the light microscopic level of

observation. Such damage, however, can lead to substantial

degradation in myelinated nerve conduction.

When decreased paranodal resistance is included in the model,

such as would occur with decompaction or detachment of

paranodal myelin [10], conduction is further degraded (Figure 7).

When node width is stretched three-fold (similar to that observed

in [10]), and paranodal resistance is reduced to one-tenth normal,

the nerve conduction velocity is decreased from 17 m/sec in the

uninjured region on the left to 6.6 m/sec in the injured region on

the right. The amplitude of the action potential is also further

reduced. Evidently, decreased paranodal resistance allows more

outward potassium current to reach the node, diminishing the net

depolarizing current, the rate of rise of the action potential, and

the peak amplitude of the action potential. Note that the 90

percent reduction in Rp represents very subtle injury in this model

since a retraction of the paranodal junction leaving a gap of only

0.1 micron around the circumference of the axon would reduce Rp

by .99.9 percent.

When paranodal resistance if further reduced to 1 percent of the

normal value, together with a three-fold increase in bare nodal

width, there is complete conduction block in the region of

simulated injury (Figure 8).

Blocked conduction in the simulation of Figure 8 can be

restored by inhibiting peak potassium conductance in all nodes of

the model by 80%, that is, by replacing GKmax = 0.013 S/cm2 with

introducing GKmax = 0.2*0.013 S/cm2. The effect of simulated

drug treatment with a potassium channel blocker is shown in

Figure 9. Conduction is restored. However, conduction velocity

remains low at 7.1 m/sec.

Discussion

Mathematical modeling can help to organize and distill

knowledge about complex systems, highlight the most important

variables that govern system performance, and suggest testable

hypotheses for future research. The simple computational model

of myelinated nerve conduction presented here provides several

insights into the normal functioning and the failure of myelinated

axons, which remain points of discussion in the 21st century

[35,36]. One critical and underappreciated variable is the width of

the nodes themselves, compared to the diameter of the axon.

Another is the paranodal electrical resistance that separates the

high density of sodium channels in the node itself from the

juxtaparanodal potassium channels.

Narrower nodes increase conduction velocity (Figure 5) as

previously pointed out in a semi-quantitative way by Giuliodori

and DiCarlo [36]. The discharge time constant, RaC, which

governs the time required for downstream nodes to be depolarized

from their resting membrane potential to the threshold potential, is

simply

RaC~
raL

pr2a

� �
:2pras Cm~2 raCmL

s

ra
~4 raCmL

s

d
, ð8Þ

where s/d is the nodal ratio or node width divided by axon

diameter. This expression includes relatively few variables and

holds true as long as paranodal myelin remains tightly coupled to

the underlying axonal membrane, so that paranodal resistance

remains normal.

The relationship of the discharge time constant (8) to nerve

conduction velocity can be appreciated as follows. Consider

Figure 6. Modeled action potentials at successive nodes of Ranvier in a model myelinated axon. Simulated crush injury to nodes on the
right. The dotted horizontal line represents threshold potential. Average axon diameter 1.0 micrometer; number of nodes of Ranvier 21; normal node
width 0.65 micrometer; injured node width 1.95 micrometer; width of juxtaparanodal region on both sides of a node 5.0 micrometers. The resistivity
of intracellular fluid 200 ohm-cm; normal paranodal resistance 3.261010 ohms throughout the model; specific membrane capacitance of axonal
membrane 1 mircofarad per square centimeter; resting axonal membrane potential –85 mV; threshold potential –50 mV; sodium equilibrium
potential +67 mV; potassium equilibrium potential –95 mV. The time step for numerical integration was 0.1 microsecond.
doi:10.1371/journal.pone.0067767.g006
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myelinated nerve conduction velocity as the distance, L, between

nodes, divided by the time, Dt, it takes for the next downstream

node (e.g. Node 2 in Figure 1) to reach threshold after the

transmembrane potential at a given node (Node 1 in Figure 1)

reaches threshold and nodal sodium channels are fully open. (The

value of Dt can be appreciated graphically with reference to

Figure 3.) As soon as Node 1 becomes a low resistance pathway for

ionic current, downstream Node 2 will depolarize to a value of

about 1/e (37%) of its resting negative membrane potential in one

time constant RaC. The time required to reach threshold is

therefore Dt~aRaC, where a is a constant near 0.5. In turn,

myelinated nerve conduction velocity

v~
L

Dt
&

L

aRaC
~

1

4raCm

d

s

� �
: ð9Þ

As node width, s, decreases, the myelinated nerve conduction

velocity increases hyperbolically. Further, the node width and

axon diameter are the major anatomic determinants of myelinated

nerve conduction velocity. The direct dependence of conduction

velocity on axon diameter is well established [16,18]. However, the

importance of the node width or the nodal ratio is much less well

appreciated.

The sensitive dependence of myelinated nerve conduction

velocity on the nodal width, s, of exposed axon membrane (or the

ratio of nodal width to axon diameter, s/d) has important

biological implications. Interestingly, normal nerve conduction

Figure 7. Modeled action potentials at successive nodes of Ranvier in a model myelinated axon. Simulated crush injury to nodes on the
right. The dotted horizontal line represents threshold potential. In this simulation node width was increased three-fold and paranodal resistance was
decreased to one tenth the normal value. Average axon diameter 1.0 micrometer; number of nodes of Ranvier 21; normal node width 0.65
micrometer; injured node width 1.95 micrometer; width of juxtaparanodal region on both sides of a node 5.0 micrometers. The resistivity of
intracellular fluid 200 ohm-cm; normal paranodal resistance 3.261010; injured paranodal resistance 3.26109 ohms; specific membrane capacitance of
axonal membrane 1 mircofarad per square centimeter; resting axonal membrane potential –85 mV; threshold potential –50 mV; sodium equilibrium
potential +67 mV; potassium equilibrium potential –95 mV. The time step for numerical integration was 0.1 microsecond.
doi:10.1371/journal.pone.0067767.g007

Figure 8. Modeled action potentials at successive nodes of Ranvier in a model myelinated axon. Simulated crush injury to nodes on the
right with 300 percent increase in bare nodal width and a 99% decrease in paranodal resistance. The dotted horizontal line represents threshold
potential. Average axon diameter 1.0 micrometer; number of nodes of Ranvier 21; normal node width 0.65 micrometer; injured node width 1.95
micrometer; width of juxtaparanodal region on both sides of a node 5.0 micrometers. The resistivity of intracellular fluid 200 ohm-cm; normal
paranodal resistance 3.261010; injured paranodal resistance 3.26108 ohms; specific membrane capacitance of axonal membrane 1 mircofarad per
square centimeter; resting axonal membrane potential –85 mV; threshold potential –50 mV; sodium equilibrium potential +67 mV; potassium
equilibrium potential –95 mV. The time step for numerical integration was 0.1 microsecond.
doi:10.1371/journal.pone.0067767.g008
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velocity is located near the elbow of the curve in Figure 5. This

subtle feature hints that mammals are a highly evolved order of

vertebrates. Natural selection would likely favor animals with

higher nerve conduction velocity, quicker reaction times, and

quicker thinking. However, as node spacing gets closer and closer,

problems could arise with quality control in forming nodes to such

close tolerances. For very small values of node span, s, small

absolute change in the separation of myelinated segments on

either side would cause a relatively large change in s and in the

nodal ratio. (Indeed, the magnitude of the derivative dv/ds is

proportional to 1/s2.) Simple movement of peripheral nerves or

very mild concussions in the brain could cause relatively large

changes in nerve conduction velocity, v, and hence in the stability

and predictability of the nervous system. Coordinated complex

movements would become more difficult if conduction time from

brain to muscle, or within the central nervous system, varied

unpredictably. Very narrow nodes would be fast, but they would

also be delicate and perhaps too noisy. In this way the net survival

advantages of quickness might plateau or even degrade as a

function of decreasing node width. We may have reached a near

optimal compromise through natural selection.

The model also provides insights into the pathophysiology of

crush injury. The subtle injury involving retraction and fraying of

paranodal myelin increases the effective capacitance of the nodal

membrane by perhaps an order of magnitude or more and also

exposes paranodal and juxtaparanodal regions. Detachment of

paranodal myelin, perhaps only visible at the electron microscopic

level of observation [10], reduces by perhaps an order of

magnitude or more the paranodal resistance through which

repolarizing potassium current must flow to restore the resting

membrane potential after an action potential. These small

anatomical injuries increase early outward potassium current,

opposing inward sodium current at the node. As a result, the time

required to discharge the next downstream node of Ranvier to the

threshold level is increased. In turn, nerve conduction velocity

falls, since it is related to the inter-nodal distance, divided by the

discharge time.

The calculated changes in conduction velocity with subtle

paranodal injury in the present paper agree with experimental

observations. Experiments in isolated guinea pig spinal cord by Shi

and Pryor [37] revealed that the peak latency of action potentials

increased by 35 percent after stretching guinea pig spinal cord

segments. The stretched region in these preparations was about

one third of the total distance over which latency was computed.

The modified cable model derived here predicts that myelinated

nerve conduction latency at node 10 in the model of Figure 7

would increase from a normal value of 0.57 sec (Figure 3) to

0.80 sec (Figure 7) a 40 percent increase in latency when the path

from node 0 to node 10 in the model includes three injured nodes

(only one third of the total). Shi and Prior also found that

superfusion with 100 micromolar 4-aminopyridine (a potassium

channel blocker) partially restored the loss in amplitude of the

compound action potential 30 min after stretch injury. However,

there was no significant change in conduction velocity following 4-

aminopyridine treatment. Since the compound action potential

represents a sum of signals from many axons, these experimental

results are consistent with the model results in Figure 9, showing

that an 80% blockade of potassium conductance restores

conduction with slow velocity following severe stretch injury.

The modeling results are also consistent with experimental studies

in other animal models and with preliminary clinical trials of 4-

aminopyridine as a therapeutic agent in spinal cord injury [4].

Retraction of myelin around nodes of Ranvier can be produced

by chemical injury as well as by stretch injury. Fu and coworkers

[14], using CARS imaging, reported paranodal myelin splitting

and retraction in response to glutamate excitotoxicity in isolated

rat spinal cord. The nodal ratio in these animals increased from a

normal value near 1.0 to a pathological value near 3.0 after

glutamate. Similarly, Shi and coworkers [32] found that nodal

ratios increased from a control mean of 0.6 to 2.9 twelve hours

after application of 500 micromolar acrolein to isolated guinea pig

spinal cord. Subtle nodal injury, accompanied by slowed

conduction velocity, is also recognized as an important mechanism

in the pathology of multiple sclerosis [3,38]. Hence the mecha-

nisms described in this paper may have relevance beyond the field

of neurotrauma.

The modeling approach used in the present study to explore the

particular effects of node width and paranodal resistance builds on

a rich intellectual history. The original model of saltatory

conduction in myelinated nerve fibers was done by Richard

Figure 9. Treatment of simulated crush injury to nodes on the right with a potassium channel blocker that reduces peak potassium
conductance in all nodes by 80%. Parameters of injury: 300 percent increase in bare nodal width and a 99% decrease in paranodal resistance. The
dotted horizontal line represents threshold potential. Average axon diameter 1.0 micrometer; number of nodes of Ranvier 21; normal node width 0.65
micrometer; injured node width 1.95 micrometer; width of juxtaparanodal region on both sides of a node 5.0 micrometers. The resistivity of
intracellular fluid 200 ohm-cm; normal paranodal resistance 3.261010; injured paranodal resistance 3.26108 ohms; specific membrane capacitance of
axonal membrane 1 mircofarad per square centimeter; resting axonal membrane potential –85 mV; threshold potential –50 mV; sodium equilibrium
potential +67 mV; potassium equilibrium potential –95 mV. The time step for numerical integration was 0.1 microsecond.
doi:10.1371/journal.pone.0067767.g009
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FitzHugh [15]. This approach modeled nodes as strings of leaky

capacitors having Hodgkin-Huxley type ion channels, and

connected in parallel by extracellular and intracellular internodal

resistances. Currents and voltages at each node are computed.

FitzHugh derived a second order partial differential equation for

this system to describe voltages at each node as functions of time

and space, and solved the equation numerically. (Much later

Basser [23] and Nygren and Halter [24] used analytical methods

to derive equivalent equations for a composite, myelinated axon,

obtaining expressions essentially isomorphic with the original

solutions of FitzHugh (compare Basser Eq. 35 and Nygren and

Halter Eq. 18 with FitzHugh Eq. 1). Such equations are known as

cable equations, because of their similarity to cable or transmission

line equations [25], and the corresponding models of nerve

conduction are known as cable models.

Cable models are especially suited to predict outcomes of

biological experiments that measure axonal conduction velocity

because they can be used to simulate wave propagation through

successive nodes. Goldman and Albus [16] described a cable

model and focused on characterizing the relationship between

conduction velocity and fiber diameter in myelinated axons, which

was found to be nearly linear for realistic axon models. Over the

next decade this model was further studied by several groups using

alternative methods for numerical integration and slightly differing

parameter values and to obtain myelinated conductions velocities

between 12 and 22 m/sec and realistic dependence of conduction

velocity upon fiber diameter [17,18].

Blight [19] studied a similar resistance-capacitance network

representing a chain of 20 internodes. In the equivalent electrical

circuit, internodes l-9 and 1 l-20 were each represented by a single

segment, containing the resistance and capacitances of the

internodal axolemma and myelin sheath, separated from the

nodal circuits on either side by the resistance of the axon core.

Internode number 10 was broken into 10 shorter sub-segments

such that the importance of paranodal parameters could then be

explored. The model quantitatively reproduced the voltage

response of the axon to injected current pulses and to propagated

action potentials, using Frankenhaeuser-Huxley kinetics. Blight

highlighted the importance of the input resistance of the internode

and the storage of charge at the axolemma. Later Stephanova and

Bostock [20,21] created a distributed-parameter model of the

myelinated human motor nerve fiber, and also highlighted the role

of paranodal resistance. Similarly, McIntyre and coworkers [22]

specifically included paranodal resistance in their model and

studied the biophysical mechanisms underlying changes in

excitability following an action potential. The re-derived cable

equations of Nygren and Halter [24] have sodium channels that

are localized at the node, whereas potassium channels and the

transmembrane sodium/potassium pump are located predomi-

nantly away from the node. In the present study we have retained

the concept of separation of sodium and potassium channels, now

well established as a constant feature of myelinated axons, and we

have added the capability to systematically adjust parameters

related to subtle injury during neurotrauma.

Our model is obviously limited in being a theoretical rather

than an experimental study in which only selected features of the

complete complex biological system are included. Ours is a

deterministic rather than a stochastic model, hence average or

typical values of parameters are used and statistical variation in

axon diameter, axon spacing or internodal width, density and

distribution of ion channels, thickness of the myelin sheath, and so

on are ignored for the sake of answering larger questions about an

idealized or typical myelinated axon. Noteworthy is the assump-

tion that internodal myelin is an ideal insulator relative to

uninsulated nodes. We ignore internodal leakage currents, which

would likely change nodal currents and voltages by only a few

percent.

Conclusions
The straightforward cable model presented here recapitulates

how the arrangement of myelin covered segments of axons,

punctuated by narrow bare nodes of Ranvier, can produce

saltatory conduction. The function of nodes of Ranvier in speeding

impulse conduction is related to the ultrastructure of the nodes

themselves. Normal myelinated nerve conduction velocity is

inversely related to the node width, s, and to the nodal ratio, s/

d, in the presence of intact paranodal resistance, Rp. The narrow

axial width of the nodes of Ranvier is the key to fast conduction.

The biological tradeoff is that even a small mechanical retraction

of myelin from very narrow nodes can cause large changes in

conduction velocity. Very narrow nodes would be very fast, but

exceedingly delicate. Hence evolution may have already found a

near optimal tradeoff between quickness and toughness.

Modeling also suggests how nodes can malfunction in disease.

Subtle mechanical, chemical, or immunological injury to the

nodes of Ranvier, causing small increases in effective node width,

s, and nodal capacitance, C, which could be easily overlooked

using ordinary light microscopes, can contribute to pathology of

conditions such as spinal cord injury and multiple sclerosis that

cause retraction of myelin. The effects of node stretching are

magnified by detachment of paranodal myelin, a process that

decreases paranodal resistance and increases repolarizing potas-

sium current above the normal level. Thus the nodes of Ranvier

are highly effective but somewhat fragile devices for increasing

nerve conduction velocity and decreasing reaction time in

vertebrate animals. Increased nodal capacitance or decreased

paranodal resistance caused by subtle myelin retraction and

detachment cause slowed saltatory conduction and ultimately

conduction block. Better understanding of the pathophysiology of

nodal injury may lead to new treatments as well as heightened

awareness of the dangers of subtle neurotrauma in closed head

injury.
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