Novel adhesives and scaffolds for nerve repair and regeneration

Dr. Riyi Shi has been researching the use of biological and synthetic polymer adhesives for providing mechanical strength to the recovering injured spinal cord, as well as peripheral nerves. An ideal adhesive is expected to provide synergistic benefits along with Polyethylene Glycol, to the injured spinal cord and peripheral nerves. It was found that a biological adhesive, mussel adhesive proteins (MAP) and a Rapidly Photo-Cross-Linkable Chitosan Hydrogel, can provide strength that is compatible to or better than, some known non-biological adhesives. On-going testing will combine the use of PEG, nerve membrane fusion, and bioadhesives, connective tissue fusion, to achieve optimal results in CNS and PNS nerve repair.

Selected publications related to the topic:

Ninan, L., Monahan, J., Stroshine, R.L., Wilker, J.J. and Shi, R. Adhesive strength of marine mussel extracts on porcine skin. Biomaterials 24: 4091-4099, 2003

Ninan, L., Stroshine, R.L., Wilker, J.J. and Shi, R. Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa (SIS). Acta Biomaterialia. 3:687-694. 2007

Li, M. and Shi, R. Fabrication of Patterned Multi-walled Poly-L-Lactic Acid Conduits for Nerve Regeneration. Journal Neuroscience Method. 165: 257-264. 2007.

Li, M., McNally, H. and Shi, R. Enhanced neurite alignment on micro-patterned poly-L-Lactic Acid films. Journal of Biomedical Materials Research: Part A. 87: 392-404. 2008.

Li, J., Rickett, T., and Shi, R. Biomimetic nerve scaffolds with aligned intraluminal microchannels: a sweet approach to tissue engineering. Langmuir. 25: 1813-1817. 2009

Rickett, T., Li, M., Patel, M., Sun, W., Leung, G., and Shi, R. Ethyl-Cyanoacrylate is Acutely Non-Toxic and Provides Sufficient Bond Strength for Anastomosis of Peripheral Nerves. Journal of Biomedical Materials Research: Part A. 90:750-4. 2009

Rickett, T., Amoozgar, Z., Tuchek, C., Park, J., Yeo, Y. and Riyi Shi. Rapidly Photo-Cross-Linkable Chitosan Hydrogel for Peripheral Neurosurgeries. Biomacromolecules. 12: 57-65, 2011